earsegmentationai process-image path/to/image.jpg --save-viz
earsegmentationai process-image path/to/directory --save-viz --save-mask
earsegmentationai process-camera --device-id 0 --save-video output.mp4
from earsegmentationai import ImageProcessor
# Initialize processor
processor = ImageProcessor()
# Process single image
result = processor.process("path/to/image.jpg")
print(f"Number of ears detected: {result.num_ears}")
# Process with visualization
result = processor.process(
"path/to/image.jpg",
return_visualization=True,
save_results=True,
output_dir="output"
)
# Access results
if result.success:
print(f"Confidence: {result.confidence:.2f}")
print(f"Processing time: {result.processing_time:.3f}s")
# Process multiple images
results = processor.process([
"image1.jpg",
"image2.jpg",
"image3.jpg"
])
for idx, result in enumerate(results.results):
print(f"Image {idx}: {result.num_ears} ears detected")
earsegmentationai process-image image.jpg --save-mask --output masks/
earsegmentationai process-image image.jpg --threshold 0.7
earsegmentationai process-image image.jpg --device cuda:0
from earsegmentationai import VideoProcessor
processor = VideoProcessor()
processor.process("input_video.mp4", output_path="output_video.mp4")
Processing: image.jpg
✓ Ear detected!
Area: 1.55% of image
Bounding box: x=54, y=144, w=76, h=65
Results saved to: output/
result.success # bool: Processing successful
result.num_ears # int: Number of ears detected
result.mask # numpy array: Segmentation mask
result.confidence # float: Detection confidence
result.processing_time # float: Time in seconds
result.visualization # numpy array: Visualization image (optional)